663 research outputs found

    Transition from Icosahedral to Decahedral Structure in a Coexisting Solid-Liquid Nickel Cluster

    Full text link
    We have used molecular dynamics simulations to construct a microcanonical caloric curve for a 1415-atom Ni icosahedron. Prior to melting the Ni cluster exhibits static solid-liquid phase coexistence. Initially a partial icosahedral structure coexists with a non-wetting melt. However at energies very close to the melting point the icosahedral structure is replaced by a truncated decahedral structure which is almost fully wet by the melt. This structure remains until the cluster fully melts. The transition appears to be driven by a preference for the melt to wet the decahedral structure.Comment: 7 pages, 6 figure

    Reentrant Adhesion Behavior in Nanocluster Deposition

    Full text link
    We simulate the collision of atomic clusters with a weakly attractive surface using molecular dynamics in a regime between soft-landing and fragmentation, where the cluster undergoes large deformation but remains intact. As a function of incident kinetic energy, we find a transition from adhesion to reflection at low kinetic energies. We also identify a second adhesive regime at intermediate kinetic energies, where strong deformation of the cluster leads to an increase in contact area and adhesive energy.Comment: 7 pages, 6 figure

    Solid-liquid phase coexistence and structural transitions in palladium clusters

    Full text link
    We use molecular dynamics with an embedded atom potential to study the behavior of palladium nanoclusters near the melting point in the microcanonical ensemble. We see transitions from both fcc and decahedral ground state structures to icosahedral structures prior to melting over a range of cluster sizes. In all cases this transition occurs during solid-liquid phase coexistence and the mechanism for the transition appears to be fluctuations in the molten fraction of the cluster and subsequent recrystallization into the icosahedral structure.Comment: 8 pages, 6 figure

    Molecular dynamics simulations of reflection and adhesion behavior in Lennard-Jones cluster deposition

    Full text link
    We conduct molecular dynamics simulations of the collision of atomic clusters with a weakly-attractive surface. We focus on an intermediate regime, between soft-landing and fragmentation, where the cluster undergoes deformation on impact but remains largely intact, and will either adhere to the surface (and possibly slide), or be reflected. We find that the outcome of the collision is determined by the Weber number, We i.e. the ratio of the kinetic energy to the adhesion energy, with a transition between adhesion and reflection occurring as We passes through unity. We also identify two distinct collision regimes: in one regime the collision is largely elastic and deformation of the cluster is relatively small but in the second regime the deformation is large and the adhesion energy starts to depend on the kinetic energy. If the transition between these two regimes occurs at a similar kinetic energy to that of the transition between reflection and adhesion, then we find that the probability of adhesion for a cluster can be bimodal. In addition we investigate the effects of the angle of incidence on adhesion and reflection. Finally we compare our findings both with recent experimental results and with macroscopic theories of particle collisions.Comment: 18 pages, 13 figure

    Effective slip boundary conditions for flows over nanoscale chemical heterogeneities

    Full text link
    We study slip boundary conditions for simple fluids at surfaces with nanoscale chemical heterogeneities. Using a perturbative approach, we examine the flow of a Newtonian fluid far from a surface described by a heterogeneous Navier slip boundary condition. In the far-field, we obtain expressions for an effective slip boundary condition in certain limiting cases. These expressions are compared to numerical solutions which show they work well when applied in the appropriate limits. The implications for experimental measurements and for the design of surfaces that exhibit large slip lengths are discussed.Comment: 14 pages, 3 figure

    Effect of Patterned Slip on Micro and Nanofluidic Flows

    Full text link
    We consider the flow of a Newtonian fluid in a nano or microchannel with walls that have patterned variations in slip length. We formulate a set of equations to describe the effects on an incompressible Newtonian flow of small variations in slip, and solve these equations for slow flows. We test these equations using molecular dynamics simulations of flow between two walls which have patterned variations in wettability. Good qualitative agreement and a reasonable degree of quantitative agreement is found between the theory and the molecular dynamics simulations. The results of both analyses show that patterned wettability can be used to induce complex variations in flow. Finally we discuss the implications of our results for the design of microfluidic mixers using slip.Comment: 13 pages, 12 figures, final version for publicatio

    Surface Melting and Breakup of Metal Nanowires: Theory and Molecular Dynamics Simulations

    Full text link
    We consider the surface melting of metal nanowires by solving a phenomenological two-parabola Landau model and by conducting molecular dynamics simulations of nickel and aluminium nanowires. The model suggests that surface melting will precede bulk melting when the spreading parameter Δγ\Delta \gamma for the melt in contact with the solid surface is positive (i.e. if the melt wets or partially wets the surface) and the wire is sufficiently thick, as is the case for planar surfaces and sufficiently large nanoparticles. Surface melting does not occur if Δγ\Delta \gamma is negative. We test this model, which assumes the surface energies of the wire are isotropic, using molecular dynamics simulations. For nickel, we observe the onset of anisotropic surface melting associated with each of the two surface facets present, but this gives way to uniform surface melting and the solid melts radially until the solid core eventually breaks up. For aluminium, while we observe complete surface melting of one facet, the lowest energy surface remains partially dry even up to the point where the melt completely penetrates the solid core.Comment: 11 pages, 13 figures, article submission preprin

    Surface-reconstructed Icosahedral Structures for Lead Clusters

    Full text link
    We describe a new family of icosahedral structures for lead clusters. In general, structures in this family contain a Mackay icosahedral core with a reconstructed two-shell outer-layer. This family includes the anti-Mackay icosahedra, which have have a Mackay icosahedral core but with most of the surface atoms in hexagonal close-packed positions. Using a many-body glue potential for lead, we identify two icosahedral structures in this family which have the lowest energies of any known structure in the size range from 900 to 15000 lead atoms. We show that these structures are stabilized by a feature of the many-body glue part of the interatomic potential.Comment: 9 pages, 8 figure

    Superheating and solid-liquid phase coexistence in nanoparticles with non-melting surfaces

    Full text link
    We present a phenomenological model of melting in nanoparticles with facets that are only partially wet by their liquid phase. We show that in this model, as the solid nanoparticle seeks to avoid coexistence with the liquid, the microcanonical melting temperature can exceed the bulk melting point, and that the onset of coexistence is a first-order transition. We show that these results are consistent with molecular dynamics simulations of aluminum nanoparticles which remain solid above the bulk melting temperature.Comment: 8 pages, 5 figure

    Pengaruh Penggunaan Asbuton Butir Pada Campuran Laston

    Full text link
    Kebutuhan aspal di Indonesia semakin lama semakin meningkat, untuk pembuatan jalan baru maupun perbaikan jalan. Konstruksi dengan bahan dasar menggunakan aspal pen 60 di Indonesia seringkali menggunakan bahan impor, sehingga digunakan pemanfaatan aspal modifikasi menggunakan aspal pen 60 dengan asbuton butir. Penelitian ini bertujuan untuk mengetahui pengaruh nilai karakteristik marshall dari campuran laston dengan asbuton butir Lawele yang diharapkan mampu menggantikan sebagian penggunaan aspal pen 60 sebagai perkerasan jalan raya. Penelitian ini menggunakan aspal minyak pen 60 dengan kadar 5,5%, 6%, 6,5%, 7% sesuai dengan ketentuan Binamarga dan campuran laston dengan asbuton butir dan aspal pen 60. Kadar aspal pen 60 dan asbuton butir yang digunakan adalah 65%–35%, 70%–30%, 75%–25%, 80%–20%. Hasil penelitian menunjukkan bahwa campuran laston dengan asbuton butir dapat digunakan sebagai perkerasan jalan, mempunyai nilai stabilitas yang memenuhi syarat campuran aspal modifikasi campuran laston dengan KAO 6%
    • …
    corecore